TF-9-distributed

Previous Chapter: Recurrent Neural Network

Distributed Mode

Here is a sample of running a Neural Network on distributed clustering. Because of the busted Tensorflow distributed management, it could not run now here. Hope it could still help you though.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
Here is a mnist training example using a single-layer
neural network and a softmax classifier.
To run this file,
1. please check '172.16.3.227:~/tensorflow/scripts'
and execute 'exec_mnist_distributed.sh'.
2. execute 'python mnist_distributed.py \
--job_name=worker \
--task_index=${0|1|2}' on each worker
and 'python mnist_distributed.py \
--job_name=ps \
--task_index=0' on parameter server
Check (https://www.tensorflow.org/versions/r0.10/how_tos/style_guide.html) for tensorflow styling guide.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import sys
import tempfile
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# input or default parameters
flags = tf.app.flags
flags.DEFINE_string(
"data_dir",
"/root/tensorflow/MNIST_data",
"Directory for storing mnist data")
flags.DEFINE_string(
"log_dir",
"/root/tensorflow/logs/mnist_log",
"Directory for storing log")
flags.DEFINE_boolean(
"download_only",
False,
"Only perform downloading of data")
flags.DEFINE_string(
"job_name",
None,
"job name: worker or ps")
flags.DEFINE_integer(
"task_index",
None,
"Worker task index, should be >= 0.")
flags.DEFINE_integer(
"hidden_units",
100,
"Number of units in the hidden layer of the NN")
flags.DEFINE_integer(
"training_steps",
20000,
"Number of (global) training steps to perform")
flags.DEFINE_integer(
"batch_size",
100,
"Training batch size to be fetched each time")
flags.DEFINE_float(
"learning_rate",
0.01,
"Learning rate in machine learning")
flags.DEFINE_string(
"ps_hosts",
"172.16.3.230:2222",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string(
"worker_hosts",
"172.16.3.227:2222,172.16.3.228:2222,172.16.3.229:2222",
"Comma-separated list of hostname:port pairs")
FLAGS = flags.FLAGS
IMAGE_PIXELS = 28
def main(_):
# validate and print necessary arguments
if FLAGS.job_name is None or FLAGS.job_name == "":
raise ValueError("Must specify an explicit `job_name`")
if FLAGS.task_index is None or FLAGS.task_index =="":
raise ValueError("Must specify an explicit `task_index`")
print("job name = %s" % FLAGS.job_name)
print("task index = %d" % FLAGS.task_index)
# parse the ps(es) and worker(s)
ps_spec = FLAGS.ps_hosts.split(",")
worker_spec = FLAGS.worker_hosts.split(",")
num_workers = len(worker_spec)
# construct the cluster and server
cluster = tf.train.ClusterSpec({"ps": ps_spec, "worker": worker_spec})
server = tf.train.Server(
cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# replica the devices
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# weight(s) and bias(es) of the hidden layer
hid_w = tf.Variable(tf.truncated_normal(
[IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
stddev=1.0 / IMAGE_PIXELS), name="hid_w")
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
# weight(s) and bias(es) of the softmax layer
sm_w = tf.Variable(tf.truncated_normal([FLAGS.hidden_units, 10],
stddev=1.0 / math.sqrt(FLAGS.hidden_units)), name="sm_w")
sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
# inputs for future calculation
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS])
y_ = tf.placeholder(tf.float32, [None, 10])
# hidden layer computation logic
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
hid = tf.nn.relu(hid_lin)
# softmax layer computation logic
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
# global step
global_step = tf.Variable(0, name="global_step", trainable=False)
# train step
train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
cross_entropy, global_step=global_step)
# accuary calculation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# initialization
init_op = tf.initialize_all_variables()
summary_op = tf.merge_all_summaries()
# TODO: (xiao) restore problem(temporary annotated)
# saver = tf.train.Saver(tf.all_variables(), sharded=True)
# create a training supervisor
sv = tf.train.Supervisor(
is_chief=(FLAGS.task_index == 0),
logdir=FLAGS.log_dir,
init_op=init_op,
summary_op=summary_op,
# TODO: (xiao) checkpoint cannot be restored here
# 1. figure out how to use sharded saver
# 2. use hdfs instead when 0.11 released
saver=None,
global_step=global_step,
save_model_secs=600)
# mnist data(exit the system is download_only is set True)
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
with sv.managed_session(server.target) as sess:
time_begin = time.time()
local_step = 0
step = 0
while not sv.should_stop():
# Training feed
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
train_feed = {x: batch_xs, y_: batch_ys}
# perform training
_, step = sess.run([train_step, global_step], feed_dict=train_feed)
local_step += 1
now = time.time()
print("%f: Worker %d: training step %d done (global step: %d)"
% (now, FLAGS.task_index, local_step, step))
if step >= FLAGS.training_steps:
break
time_end = time.time()
training_time = time_end - time_begin
print("Training elapsed time: %f s" % training_time)
# Validation feed
val_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
val_xent = sess.run(cross_entropy, feed_dict=val_feed)
print("After %d training step(s), validation cross entropy = %g"
% (FLAGS.training_steps, val_xent))
# let's calculate the accuracy
pred_feed = {x: mnist.test.images, y_: mnist.test.labels}
print("Accuracy is: %f" % sess.run(accuracy, feed_dict=pred_feed))
# sv.stop()
if __name__ == "__main__":
tf.app.run()

Previous Chapter: Recurrent Neural Network